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LEARNING CURVE AND RATE ADJUSTMENT MODELS:

COMPARATIVE PREDICTION ACCURACY UNDER VARYING CONDITIONS

ABSTRACT

Learning curve models have gained widespread acceptance as a
technique for analyzing and forecasting the cost of items produced
from a repetitive process. Considerable research has investigated
augmenting the traditional learning curve model with the addition
of a production rate variable, creating a rate adjustment model.
This study compares the predictive accuracy of the learning curve
and rate adjustment models. A simulation methodology is used to
vary conditions along seven dimensions. Forecast errors are
analyzed and compared under the various simulated conditions using
ANOVA. Overall results indicate that neither model dominates; each
is more accurate under some conditions. Conditions under which
each model tends to result in lower forecast errors are identified

and discussed.
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LEARNING CURVE AND RATE ADJUSTMENT MODELS:

COMPARATIVE PREDICTION ACCURACY UNDER VARYING CONDITIONS

INTRODUCTION
' Learning curves have gained widespread acceptance as a tool for
planning, analyzing, explaining, and predicting the behavior of the
uni: cost of items produced from a repetitive production process.
(See Yelle, 1979, for a review.) Cost estimation techniques for
planning the cost of acquiring weapon systems by the Department of
Defense, for example, typically consider the role of learning in
the estimation process. The premise of learning curve analysis is
that cumulative quantity is the primary driver of unit cost. Unit
cost is expected to decline as cumulative quantity increases.
There is general acknowledgement that cumulative quantity is
not the only factor that influences anit cost and that the simple
learning curve is not a fully adequate description of cost
behavior. Hence prior research has attempted to augment learning
curve models by including additional variables (e.g., Moses, 1990).
Most attention has been focused on the addition of a production

rate term.'

The resulting augmented model is usually referred to
as a rate adjustment model.
Conceptually, production rate should be expected to affect unit

cost because of the impact of economies of scale. Higher

‘One review of the literature pertaining to learning curves
(Cheney, 1977) found that 36% of the articles reviewed attempted to
augment the learning curve model in some manner by the inclusion cf
production related variables.




production rates may lead to several related effects: greater
specialization of labor, quantity discounts and efficiencies
associated with raw materials purchases, and greater use of
facilities permitting fixed overhead costs to be spread over a
larger output guantity. Together, these effects work to increase
efficiency and reduce production cost (Bemis, 1981; Boger and Liao,
1990; Large, et. al., 1974; Linder and Wilbourn, 1$73). However,
highér production rate does not gquarantee lower cost. When
production rate exceeds capacity, such factors as over-time pay,
lack of skilled labor, or the need to bring more facilities online
may lead to inefficiencies and increased unit cost. In short,
production rate may be associated with both ‘economies and
diseconomies of scale.
PRIOR_RESEARCH

Numerous studies, wusing data on actual production cost
elements, have been conducted to empirically examine¢: the impact of
production rate on unit cost. The broad objective of the research
has been to document rate/cost relationships and determine if
consideration of production rate leads to improvements in cost
explanation or prediction. Results have been inconsistent and
general findings inconclusive. Various studies (e.g., Alchian,
1963; Cochran, 1960; Hirsh, 1952; Large, Campbell and Cates, 1976)
found little or no significance for rate variables. Other studies
did document significant rate/cost relationships (e.g., Benmis,

1981; Cox and Gansler, 1981). some research found significant

results only for particular individual cost elements, such as labor




(Smith, 1976), tooling (Levenson, et. al., 1971) or overhead
(Large, Hoffmayer, and Kontrovich, 1974). But rate/cost
relationships for these same cost elements were not consistently
evident in other studies. When significant, estimates of the
rate/cost slope varied greatly and the direction of the
relationship was sometimes negative and sometimes positive (e.g.,
Moses, 1990). In reviewing the existing research on production
rate, Smith (1980) concluded that a rate/cost relationship may
exist but that the existence, strength and nature of the
relationship varies with the item produced and the cost element
examined.

Several explanations for these varying, inconclusive empirical
results can be offered:

(a) Varying results are to be expected because rate changes can
lead to both economies and diseconomies of scale.

(b) Production rate effects are difficult to isolate
empirically because of colinearity with cumulative gquantity
(Gulledge and Womer, 1986).

(¢) Researchers have usually used inappropriate measures of
production rate leading to misspecified models (Boger and Liao,
1990) .

(d) The impact of a production rate change is dominated by
other uncertainties (Large, Hoffmayer, and Kontrovich, 1974),
particularly by cumulative quantity (Asher, 1956). Alchian (1963),

for example, was unable to find results for rate adjustment models

that improved on the traditional learning curve without a rate




parameter.

Q CTIVE OF THE STUDY

The prior research suggests that consideration of production
rate sometimes improves cost explanation, but not always. The
prior research suggests that a traditional learning curve model
sometimes is preferable to a rate adjustment model, but not always.
The prior research provides 1little guidance concerning the
circumstances under which explicit incorporation of production rate
into a 1learning curve model is likely to lead to improved
explanation or predictien. This issue is important in a number of
cost analysis and cost estimation situations. Dorsatt (1990), for
example, describes the current situation facing military cost
estimators who, with the military facing budget reductions and
program stretchouts, are required to rapidly develop weapon system
acquisition cost estimates under many different quahiity profiles.
One choice the cost analyst faces is between using a rate
adjustment model or a traditional learning model to develop estimates.?

The objective of this paper is to address the following broad

issue: Under what circumstances is it beneficial to explicitly

Two other technigues for making cost estimates when
production rate changes are also mentioned by Dorsett: curve
rotation, which involves an ad hoc upward or downward revision to
the slope of the learning curve, and the use of repricing models
(e.g., Balut, 1981; Balut, Gulledge, and Womer, 1989) which adjust
learning curve estimates to reflect a greater or lesser application
of overhead cost. Dorsett c¢riticized curve rotation for being
subjective and 1leading to a compounding of error when the
prediction horizon is not short. He criticized repricing models
because they must be plant-specific to be effective.
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consider production rate in cost analysis? That broad issue is
addressed by focusing more narrowly on the following research
gquestion: Under what circumstances do rate adjustment models
- outperform traditional learning curve models? Performance here
means the ability to provide accurate predictions of future cost.?
RESEARCH APPROACH

Operationally the research question implies a comparison of the
predictive accuracy of two competing cost estimation models. The
two competing models were as follows:

The traditional learning curve model, which predicts unit cost

as a function of cumulative quantity*:

¢, = aQ® (1)
where
e = Unit cost of item at quantity Q (i.e., with learning
considered).
Q = Cunulative quantity produced.
a = Theoretical first unit cost.
b = Learning curve exponent (which can be converted to a

learning slope by slope = 2°).

3For many of the studies cited in the section on prior
research, performance was assessed in terms of a model's ability to
ex post, statistically account for the variance in an actual cost
series. The problem of “overfitting” a model to data always exists
when regression techniques are used to ex post explain a cost
series. In fact, if higher R? is achieved by overfitting,
predictive ability can be reduced (Wetherill, 1986).

‘Note that this is an incremental unit cost model rather than
a cumulative average cost model. Liao (1988) discusses the
differences between the two approaches and discusses why the
incremental model has become dominant in practice. One reason is
that the cumulative model weights early observations more heavily
and, in effect, "smooths" away period-to-period changes in average
cost.




The most widely used rate adjustment model, which modifies the
traditional learning curve wodel with the addition of a production

rate term:

C, = aQR’ (2)
where

C;, = Unit cost of item at quantity Q and production rate per
period R (i. e., with production rate as well as
learning considered).

Q = Cumulative quantity produced.

R = Production rate per period measure.

a = Theoretical first unit cost.

b = Learning curve exponent.

c = Production rate exponent (which can be converted to a

production rate slope by slope = 2°).

A simulation approach was used to address the research
question. In brief, cost series were denerated under varying
simulated conditions. The learning curve model and the rate
adjustment model were separately fit to the cost series to estimate
model parameters. The estimated models were then used to
separately predict future cost. The relative accuracy of the two
alternative future cost predictions was determined. Finally, an
analysis (ANOVA) was conducted relating relative prediction
accuracy (dependent variable) to the simulated conditions
(independent variables).

There are three main benefits gained from the simulation
approach. First, factors hypothesized to influence prediction
accuracy can be varied over a wider range of conditions than would

be encountered in any one (or many) sample(s) of actual cost data.

Second, explicit control is achieved over the manipulation of




factors. Third, noise caused by factors not explicitly
investigated is removed. Hence simulation provides the most
efficient way of investigating data containing a wide variety of
combinations of the factor levels while controlling for the effects
-of other factors not explicitly identified.
RESEARCH CHOICES

There were five choices that had to be made in conducting the
simulation experiment:

(1) The form of the rate adjustment (RA) model whose
performance was to be compared to the learning curve (LC) model,

(2) The functional form of the cost model used to generate the
simulated cost data.

(3) The conditions to be varied across simulation treatments.

(4) The cost objective (what cost was to be predicted).

(5) The measure of prediction performance.
Items (1), (2), (4) and (5) deal with methodological issues. Item
(3) deals with the various conditions simulated. The discussion of
item (3) encompasses the major variables examined in the study and
hence the major issues addressed. Each item will be discussed in
turn.

1. The Rate Adjustment Model. Various models, both

theoretical and empirical, have been suggested for incorporating
production rate into the learning curve (Balut 1981; Balut,
Gulledge, and Womer, 1989; Linder and Wilbourn, 1973; Smith, 1980,
1981; Washburn, 1972; Womer, 1979). The models vary with respect

to tradeoffs made between theoretical completeness and empirical




tractability. Equation 2, described above, was the specific rate
adjustment model analyzed in this study, for several reasons:
First, it is the most widely used rate adjustment model in the
published literature. Second, it is commonly used today in the
practice of cost analysis (e.g., Dorsett, 1990). Third, in
addition to cost and quantity data (needed to estimate any LC
model), equation 2 requires only production rate data. Thus
equaﬁion 2 1is particularly appropriate for examining the
incremental benefit of attention to production rate. (Other RA
models offered in the literature require knowledge of still
additional variables).® 1In short, equation 2 is the most widely
applicable and most generally used rate adjustmenttmodel.

2. The Cost Generating Function: A "true" cost function
for an actual item depends on the item, the firm, the time period
and all the varying circumstances surrounding actual production.
It is likely that most manufacturers do not “know" the true cost
function underlying goods they manufacture. Thus the choice of a
cost function to generate simulated cost data is necessarily ad
hoc. The objective here was to choose a "generic" cost function
which had face validity, which included components (parameters and
variables) that were generalizable to all production situations,

and which resulted in a unit cost that depended on both learning

’The equation 2 model is particularly applicable in situations
where a cost analyst or estimator does not have ready access to or
sufficient knowledge about the cost structure and cost drivers of
a manufacturer. Examples include the Department of Defense
procuring items from government contractors in the private sector,
or prime contractors placing orders with subcontractors.
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and production rate factors. The following explanation of the cost
function used reflects these concerns.

At the most basic level the cost of any unit is just the sum of
the variable cost directly incurred in creating the unit and the
share of fixed costs assigned to the unit, where the amount of

fixed costs assigned depend on the number of units produced.

UvCc = VC + FC (3)
PQ
where
UC = Unit cost.
VC = Variable cost per unit.
FC = Total fixed costs per period.
PQ = Production quantity per period.

The original concept of "learning" (Wright, 1936) involved the
reduction in variable cost per unit expected with increases in
cumulative quantity produced. (By definition, fixed costs are
assumed tc be unaffected by volume or quantity.) To incorporate

the effect of learning, variable cost can be expressed as:

Ve, = V& (QY) (4)
where
Q = Cumulative quantity.
VC, = Variable cost of the Qth unit.
VC, = Variable cost of the first unit.
d = Parameter, the learning index.

Substituting into equation 3:

UC, = V¢, (%) + EC (5)
PQ

Additionally, assume the existence of a "standard" ("benchmark,"

"normal," ‘“planned") production quantity per period (PQ,).




Standard fixed cost per unit (SFC) at the standard production
quantity would be:

SFC = FC (6)
PQ,

The production rate (PR) for any period can then be expressed
as a ratio of the production quantity to the standard quantity:

PR = PQ (7)
PQ,

The second term of equation (6) can then be rewritten as:

FC = SFC (8)
PQ PR

and equation 5 rewritten as:

uc, = vc,(QY) + sFc (PRY) (9)

In this formulation it can be seen that total cost per unit is
the sum of variable cost per unit (adjusted for learning) plus
standard fixed cost per unit (adjusted for productieon rate). This
model incorporates the two factors presumed to impict unit costs
that have been most extensively investigated: cumulative quantity
(Q) and production rate per period (PR).® It is consistent with
both the theoretical and empirical 1literature which sees the

primary impact of learning to be on variable costs and the primary

Ssmith (1980, 1981), for example, used a model similar to
equation 9 to explore the effect of different production rates on
unit cost. Balut (1981) and Balut, Gulledge and Womer (1989)
construct models based on learning and production quantity to
assist in "redistributing" overhead and "repricing" unit costs when
changes in production rate occur. The Balut and Balut, Gulledge
and Womer models differ in that they determine a learning rate for
total (not variable) unit cost and then apply an adjustment factor
to allow for the impact of varying production quantity on the
amount of fixed cost included in total cost.

10




impact of production rate to be on the spreading of fixed costs
(Smith, 1980). Simulated cost data in this study was generated
using equation 9, while varying values for the variables and
. parameters on the right han& side of the equation to reflect
differing conditions.

. e Si ed conditjions: The general research hypothcsis
is that the relative predictive accuracy of the LC and RA models
will depend on the circumstances in which they are used. What
conditions might be hypothesized to affect prediction accuracy?
Seven different factors (independent variables) were varied during
the simulation. In the following paragraphs, each factor is
discussed. A label for each is provided, along with a discussion
of why the factor may be relevant to prediction accuracy and how
the factor was operationalized in the simulation. Table 1
summarizes the seven factors.

i) Data History (DATAHIST): The number of data points
available to estimate parameters for a model should affect the
accuracy of a model. More data available during the "estimation
period" should be associated with greater accuracy for both the LC
and the RA model.” But increased data may not impact the accuracy
of the two models in the same manner. The RA model requires the
estimation of an additional parameter, and consequently is likely
to require more data points to avoid unrelisble parameter estimates

and resultant prediction inaccuracy. Hence it may be hypothesized

"Phere are, of course, cost/benefit tradeoffs. The marginal
benefits of increased prediction accuracy for any model must be
weighed against the marginal costs of additional data collection.

11




that the RA model will be more sensitive (less accurate) when data
is lean.

In the simulation, data history was varied from four to seven
to ten data points available for estimating model parameters. This
simulates having knowledge of costs and quantities for four, seven
or ten production lots. Four is the minimum number of observations
needed to estimate the parameters of the RA model by regression.
The simulation focuses on lean data availability both because the
effects of marginal changes in data availability should be most

pronounced when few observations are available and because many

real world applications (e.g., cost analysis of Department of
Defense weapon system procurement) occur under 1lean data
conditions.

ii) variable Cost Learning Rate (LEARNRAT): In the cost

generating function, learning affects total unit cost by affecting
variable cost per unit. Past research (Smunt, 1986) has shown that
the improvement in prediction accuracy from including a learning
parameter in a model (when compared to its absence) depends on the
degree of learning that exists in the underlying phenomena being
modeled; the greater the degree of learning, the more benefit
gained from inclusion of a learning rate term. This suggests that
prediction accuracy may depend on the learning rate and hence that
relative prediction accuracy of the LC and RA models may also
depend on the learning rate. In the simulation, variable cost
learning rate (reflected in parameter d in equation 9) was varied

from 75% to 85% to 95%. Generally, complex products or labor

12




TABLE 1
INDEPENDANT VARIABLES

concept Label —  levels =
‘Data History DATAHIST' 4 7 10
Variable Cost Learning LEARNRAT 75% 85% 95%
Rate

Fixed Cost Burden BURDEN? 15% 33% 50%
Production Rate Trend PROTREND® Level Growth
Production Rate

Instability/Variance RATEVAR® .05 .15 .25
Cost Noise/Variance COSTVAR® .05 .15 .25
Future Production Level FUTUPROD® Low Same High

'Number of data points available during the model estimation
period; simulates the number of past production lots.

2standard per unit fixed cost as a percentage of cumulative
average per unit total cost, during the model estimation period.

*A level trend means production at 100% of standard production
for each lot during the estimation period. A growth trend means
production rate gradually increasing to 100% of standard production
during the estimation period. The specific growth pattern depends
on the number of production lots in the estimation period, with
sequences as follows (expressed as a ¥ of standard): For DATAHIST
= 4: 33%, 67%, 100%, 100%. For DATAHIST = 7: 20%, 40%, 60%, 80%,
100%, 100%, 100%. For DATAHIST = 10: 10%, 20%, 35%, 50%, 70%, 90%,
100%, 100%, 100%, 100%.

‘coefficient of variation of production rate. (Degree of
instability of production rate around the general production rate
trend.)

Scoefficient of variation of total per unit cost.

®vgame" means production rate at 100% of standard for each
lot produced within the prediction zone. "Low" means production
rate at 50%. "High" means production rate at 150%.




total unit cost made up of fixed cost.? Three percentages were used
in the simulation: 15%, 33%, and 50%. The different percentages
can be viewed as simulating different degrees of operating
leverage, of capital intensiveness, or of plant automation. The
15% level reflects the average fraction of price represented by
fixed overhead in the aerospace industry, as estimated at one time
by DOD (Balut, 1981).'® The larger percentages are consistent with
the trend toward increased automation (McCullough and Balut, 1986).

iv) Production Rate Trend (PROTREND): When initiating a new
product, it is not uncommon for the production rate per period to
start low and trend upward to some "normal" level. This may be due
both to the need to develop demand for the output ¢y the desire to
start with a small production volume, allowing slack for working
ougs out of the production process. Alternatively, when a "new"
product results from a relatively small modification of an existing

product, sufficient customer demand or sufficient cor fidence in the

Operationally this is a bit complex, since both per unit
variable and per unit fixed cost depend on other simulation inputs
(cumulative gquantity and production rate per period). The process
of relating fixed cost to total cost was as follows: First, a
cumulative average per unit variable cost for all units produced
during the estimation period was determined. Then a standard fixed
cost per unit was set relative to the cumulative average per unit
variable cost. For example, if standard fixed cost per unit was
set equal to cumulative average variable cost per unit, then "on
average" fixed cost would comprise 50% of total unit cost during
the estimation period. Actual fixed cost per unit may differ from
standard fixed cost per unit if the production rate (discussed
later) was not at 100% of standard.

V1n the absence of firm-specific cost data, the Cost Analysis
Improvement Group in the Office of the Secretary of Defense treats
15% of the unit price of a defense system as representing fixed
cost (Pilling, 1990).

14




production process may be assumed and full scale production may be
initiated rapidly. In short, two different patterns in production
volume may be exhibited early on when introducing a new item: a
" gradual growing trend toward full scale production or a level trend
due to introduction at full scale production volume.

How might the production rate trend during the estimation
period affect the relative prediction accuracy of the LC and the RA
models? Two contrary arguments seem relevant. On the one hand,
the purpose of an RA model is to explain variance in cost due to
variance in production rate. If production rate is virtually level
during a model estimation period, there would be little period-to-~
period differences in unit cost caused by the spreading of fixed
costs over varying outputs, Any rate effects would 1likely be
swamped by other random impacts on cost. This suggests greater
incremental benefit to using an RA model when the production rate
has not been level, i.e., when growth occurred during the model
estimation period. On the other hand, a growing production rate
from period to period results in statistical problems. Within the
RA model, there will be greater colinearity between cumulative
quantity (necessarily growing each period) and production rate.
Empirically, this colinearity has been observed by many cost
analysts (e. g., Gulledge and Womer, 1986). The colinearity makes
production rate a somewhat redundant variable and causes unreliable
parameter estimates. This suggests less incremental benefit to
using an RA model if production rate has been growing.

Which argument holds is an empirical question. The simulation

15




created two production trends during the model estimation period:
"level" and "growth." These represented general trends (but, as
will become clear momentarily, variance around the general trend
was introduced). The level trend simulated a production rate set
at a "standard" 100% each period during model estimation. The
growth trend simulated production rate climbing gradually to 100%.
Details of the trends are in table 1.

v) Production Rate Instability/Variance (RATEVAR): Numerous
factors, in addition to the general trend in output discussed
above, may operate to cause period-to-period fluctuations in
production rate. Manufacturers typically do not have complete
control over either demand for output or supply of inputs.
Conditions in either market can cause instability in production
rate. (Of course, unstable demand, due to the uncertainties of
annual budget negotiations, is claimed to be a major cause of cost
growth during the acquisition of major weapon systems by the DoD).
The concern here is with the likely effect of rate instability on
the relative accuracy of LC and RA models. 1If production rate is
highly stakle across periods, there would be little variance in
cost outcomes on which to estimate a rate parameter. Rate effects
would be dominated by other impacts on cost. This suggests greater
benefit to using an RA model when production rate is unstable over
time.

Production rate instability was simuluated by adding random
variance to each period's production rate during the estimation

period. The amount of wvariance ranged from a coefficient of

16




variation of .05 to .15 to ,25. For example, if the production
trend was level and the coefficient of variation was ,05 then
"actual" production rates simulated were generated by a normal
distribution with mean equal to the standard production rate (100%)
.and sigma equal to 5%.

vi) Cost Noise/Variance (COSTVAR): From period to period
there will be ungystematic, unanticipated, non-recurring, random
factors that will impact unit cost. Changes in the cost, type or
availability of input resources, temporary increases or decreases
in efficiency, and unplanned changes in the production process are
all possible causes. Conceptually such unsystematic factors can be
thought of as adding random noise to unit cost. While unsystematic
variation in cost cannot (by definition) be controlled, it is often
possible to characterize different production processes in terms of
the degree of unsystematic variation; some processes are simply
less well-understood, more uncertain, and less stable than others.

Does the relative predictive accuracy of LC and RA models
depend on the stability of the process underlying cost? To
investigate this question, random variance was added to the
simulated costs generated from the cost function. The amount of
variance ranged from a coefficient of variation of .05 to .15 to
.25. For example, when the coefficient of variation was .25, then
"actual" unit costs simulated were generated by a normal
distribution with mean equal to cost from equation 9 and sigma
equal to 25%.

vii) Future Production Level (FUTUPROD): Once a model is

17




constructed (from data available during the estimation period), it
is to be used to predict future cost. The production rate planned
for the future may vary from past levels. Further growth may be
planned. Cutbacks may be anticipated. Will the level of the
future production rate affect the relative predictive accuracy of
the LC and RA models? 1Is one model more accurate if cutbacks in
production are anticipated and another if growth is planned?
Conflicting scenarios can be argued. For example, on the one hand,
inclusion of a rate term might be expected to increase prediction
accuracy when production rate changes significantly (i. e., either
growth or decline in the future period). On the other hand, if
growth during the future prediction period mereiy continues a
growth trend established during the estimation period, then
production rate will once again tend to be correlated with
cumulative quantity, and the incremental benefit ~f an RA model
over an LC model may be less obvious.

In the simulation, future production was set at three levels:
low (50% of standard), same (100% of standard) and high (150% of
standard). These simulate conditions of cutting back, maintaining
or increasing production relative to the level of production
existing at the end of the model estimation period.

4. The Cost Ob-jective: What is to be predicted? Up to this

point the stated purpose of the study has been to evaluate accuracy
when predicting future cost. But which future cost? Three
alternatives were examined.

i) Next period average unit cost: As the label suggests this
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is the average per unit cost of items in the production "lot"
manufactured in the first period following the estimation period.
Here the total cost of producing the output for the period is
simply divided by the output volume to arrive at unit cost.
Attention to this cost ohjective simulates the need to predict near
term unit cost.

ii) Total cost over a finite production horizon: The
objective here is to predict the total cost of all units produced
during a fixed length production horizon. Three periods were used
as the length of the prcduction horizon (one production 1lot
produced each period). If the future production rate is low (higyh)
then relatively few (many) units will be produced during the finite
production horizon. Attention to this cost objective simulates the
need to predict costs over some specific planning period,
regardless of the volume to be produced during that planning
period.

iii) Total program cost: The objective here is to predictive
total cost for a sp2cified number of units. If the future
production rate is low (high) then relatively more (fewer) periods
will be required to manufacture the desired outpnt. The simulation
was constructed such that at a low (same, high) level of future
production six (three, two) future periods were required to produce
the output. Attention to this cost objective simulates the need to
predict total cost for a particular production program, regardless
of the number of future periods necessary to complete the program.

Examining each of these three cost objectives was deemed
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necessary to provide a well-rounded investigation of predictive
accuracy. However, the findings were substantially the same across
the three cost objectives. In the interests of space, the
remainder of this paper will discuss the analysis and results only
for the first cost objective, the average cost per unit for the
next period's output.

5, The Measures of Prediction Performance: In order to
compare prediction accuracy between LC and RA models, two kinds of
measures were required. First, a model prediction error (ERR) was

determined separately for each (LC or RA) model as follows:

ERR = |puc - avuc| + Avc
where A
PUC = Predicted unit cost from either the learning curve
or the rate adjustment model.
AUC = Actual wunit cost as generated by the cost

function.
This is a commonly used error measure, the absolute percentage
error.
Next a simple difference in errors (ERRDIFF) between the LC
prediction and the RA prediction was calculated.

ERRDIFF = ERR, - ERR,,

where
ERR . = Absolute percentage error using the learning curve
model prediction of cost.
ERR,, = Absolute percentage error using the rate

adjustment model prediction of cost.
Positive values for ERRDIFF mean that the rate adjustment model

produced smaller prediction errors that the learning curve model
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and consequently imply increased accuracy from incorporating a
production rate variable into the prediction process. Negative
values mean the learning curve model is more accurate. ERRDIFF
"represents the dependent variable in the statistical analysis. The
research question then becomes: What factors or conditions explain
variance in ERRDIFF?

Figure 1 summarizes the complete simulation process leading up
to the determination of ERRDIFF. The simulation was run once for
each possible combination of treatments. Given seven factors
varied and three possible values for each factor (except for
PROTREND which had two), there were 3 x 3 x 3 x 3 ¥ 3 x 3 x 2 =
1458 combinations. Thus the simulation generated 1458 observations

and 1458 values for ERRDIFF.'

ANATLYSIS AND FINDINGS

The simulation results were evaluated using analysis of
variance (ANOVA) to conduct tests of statistical significance. All
main effects are discussed in the following section. First order

(pairwise) interactions were also tested. Those significant at .01

"In the simulation, just as in the real practice of cost
analysis, it is possible for a model estimated on limited data to
be very inaccurate, leading to extreme values for ERR (or ERRDIFF).
If such outlier values were to be used in the subsequent analysis,
findings would be driven by the outliers. Screening of the
observations for outliers was necessary. During the simulation, if
a model produced an ERR value in excess of 100%, then that value
was replaced with 100%. This truncation has the effect of reducing
the impact of an outlier on the analysis while still retaining the
observation as one that exhibited poor accuracy. Alternative
approaches to the outlier problem included deletion instead of
truncation and use of a 50% ERR cutoff rather than the 100% cutoft.
Findings were not sensitive to these alternatives.
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are also discussed. Table 2 provides the ANOVA results.

Main Effects: As indicated in table 2, all main effects,
except LEARNRAT, are significant at .000%, indicating that values
for ERRDIFF are significantly influenced by the treatment
conditions. Table 3 summarizes ERRDIFF values under the various
experimental conditions.

The major findings are perhaps made most obvious by a plot of
ERRDiFF by treatments. Figure 2 shows a sample plot of ERRDIFF
against DATAHIST. Two points are of interest. First, the relative
accuracy of the LC ard RA models clearly does depend on the nunber
of observations available for model estimation. Second, both
negative and positive value for ERRDIFF are presentt This implies
that under some conditions (few observations) the LC model is more
accurate than the RA model. But under different conditions (larger
number of observations) the RA model is more accurate. The
crossover point occurs at about seven observations.

Figure 3 shows a similar plot of ERRDIFF with all (significant)
variables superimposed. In this plot, 1, 2, and 3 on the x-axis
reflect low, medium, and high values for the independent variables
(which are taken from the left, middle and right columns of Table
3). Figure 3 makes several points. First for each the six
variables plotted, ERRDIFF varies significantly depending on the
value (treatment) for the independent variable. This simply
implies that the experimental conditions do reflect factors
relevant to model accuracy.

Second for all six independent variables, at some point over
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TABLE 2

ANALYSIS OF VARIANCE RESULTS

SOURCE DF SUM _OF SQUARES MEAN SQUARE F_VALUE
Model 85 33.10921 «3895 9,03 ‘
Error 1372 $9.18006 .0431 PR>F:
Corrected Total 1457 92.28927 .0001
R®____ cv. ERRDIFF MEAN

.3568 1236.81 -,0168

SOURCE DF ANOVA 5SS F_VALUE PR>F
DATAHIST 2 3.6780 42.63 . 0001
LEARNRAT 2 .0510 .59 .5536
BURDEN 2 . 7383 8.56 .0002
PROTREND 1 1.6259 37.70 .0001
RATEVAR 2 5.4728 63,44 . 0001
COSTVAR 2 9.3918 108.87 .0001
FUTUPROD 2 .6662 7.72 . 0005
DATAHIST*LEARNRAT 4 . 0699 .41 .8050
DATAHIST*BURDEN 4 <1772 1.03 3920
DATAHIST*PROTREND 2 «3217 3.73 .0243
DATAHIST*RATEVAR 4 0844 .49 .7436
DATAHIST*COSTVAR 4 «9813 5.69 .0002
DATAHIST*FUTUPROD 4 .7531 4,37 .0016
LEARNRAT*BURDEN 4 .2444 1.42 .2260
LEARNRAT*PROTREND 2 . 0092 +11 .8979
LEARNRAT*RATEVAR 4 .3933 2.28 .0588
LEARNRAT*COSTVAR 4 .2407 1.40 .2332
LEARNRAT*FUTUPROD 4 .3818 2.21 . 0655
BURDEN*PROTREND 2 . 0806 .93 .3931
BURDEN*RATEVAR 4 .2325 1.35 .2501
BURDEN*COSTVAR 4 . 7304 4.23 .0021
BURDEN*FUTUPROD 4 1.0539 6.11 .0001
PROTREND*RATEVAR 2 2.1867 25.35 .0001
PROTREND*COSTVAR 2 +1022 1.19 .3059
PROTREND*FUTUPROD 2 <4751 5.51 .0041
RATEVAR*COSTVAR 4 +3163 1.83 .1199
RATEVAR*FUTUPROD 4 1.7734 10.28 .0001
COSTVAR*FUTUPROD 4 .8760 5.08 .0005




TABLE 3

PREDICTION ERROR DIFFERENCE BETWEEN
LEARNING CURVE AND RATE ADJUSTMENT MODELS:
MAIN EFFECTS

Independent Varijable ERRDIFF for Each Level
DATAHIST Value: 4 7 10
ERRDIFF Mean: -.87 . 007 .030
LEARSRAT Value: 75% 85% 95%
ERRDIFF Mean: -.009 -.019 -.023
BURDEN Value: 15% 33% 50%
ERRDIFF Mean: =.047 -.009 .006
l PROTREND Value: level - growth
i ERRDIFF Mean: -.050 o
RATEVAR Value: .05 .15 .25
ERRDIFF Mean: -.095 -.010 . 054
COSTVAR Value: .05 .15 © .25
ERRDIFF Mean: . 082 -.019 -.114
FUTUPROD Value low same high

ERRDIFF Mean: .003 -,007 -.046




FIGURE 2

PLOT OF PREDICTION ERROR DIFFERENCE
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FIGURE 3

PLOT OF PREDICTION ERROR DIFFERENCE
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the range of these variables, both positive and negative values for
ERRDIFF exist. This means that neither the LC model nor the RA
model dominates. Each model is more accurate under some
experimental conditions.

Third, some factors apparently have a dreater impact on
relative prediction accuracy than others. For example, the plot
shows that both the most extreme values for ERRDIFF (highest
positive and lowest negative) are associated with different
treatments on COSTVAR. The F-value for COSTVAR is also the highest
and most significant in the ANOVA. This suggests that the greatest
impact on relative predictive accuracy is due to variation in the
amount of unsystematic noise impacting the measure of cost. A
relatively large effect is also apparent due to variation in
RATEVAR; while relatively small (but still significant) effects are
associated with wvariations in BURDEN and FUTUPROD. These
observations are interesting but must be interpreted with caution.
COSTVAR does have the greatest impact on ERRDIFF over the
particular range of treatments examined by the simulation. But if
the ranges over which the individual independent variables were
allowed to vary were altered, a different factor could appear to be
most important. |

Fourth, values fcr ERRDIFF are either monotonically increasing
or decreasing for the various independent variable treatments.
Hence some general conclusions about the impact of the experimental
conditions on relative prediction errors are possible:

a) Data History: As indicated above the RA model outperforms
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the LC model when the number of cbservations for model estimation
is relatively greater. This is expected; the benefit from greater
precision due to the additional term in the RA model can only be
realized when the data are sufficient to produce reliable parameter
estimates.

b) Fixed Cost Burden: As expected the RA model tends to
outperform the LC model as the proportion of total unit cost
comprised of fixed cost increases. This implies that the benefit
derived from use of a rate adjustment model depends on the capital
intensiveness of the production process. Surprising, perhaps, was
the fact that the change in ERRDIFF from the low (15%) fixed cost
treatment to the high (50%) was relatively small. \

c) Past Production Trend: The RA model tends to outperform
the LC model if the production rate was growing during the model
estimation period. This finding suggests that it iu necessary to
have a changing production rate from period-to-pericd in order for
the model estimation process to reliably capture the effect of rate
on cost. It also suggests that relatively higher correlation
between cumulative quantity and production rate (which will occur
when rate has been growing) does not imply that cumulative quantity
will be a sufficient variable. Cumulative quantity does not
adequately capture the impact of rate changes.

d) Production Rate Instability: The RA model tends to
outperform the LC model when there is greater instability in

production rate. This suggests that it is desirable to have large

period-to-period variation in production rate during the time of




model estimation. In retrospect this conclusion seems obvious. If
the variance in cost caused by rate changes is small, because the
rate changes themselves are small, then the effect will be swamped
by other effects and model parameters will be unreliable.

e) Cost Noise/Variance: As the random noise in unit cost
increases, the RA model will perform more poorly relative to the LC
model. This suggests that when there are unsystematic,
unpredictable factors that influence cost, use of the RA model is
less beneficial. The noise leads to unreliable estimates of the
production rate effect and poorer cost predictions.

f) Future Production Level: The degree to which the RA model
outperforms the LC model appears to be inversely associated with
the production rate in the prediction period. When cutbacks in
production are anticipated, cost is more accurately predicted by
the RA model. When growth is anticipated, cost is more accurately
predicted by the LC model. This suggests that the RA model is most
beneficial when a reversing of the production trend from the
estimation period to the prediction period is expected.

Interaction Effects: Eight first order interactions were also

found to be significant in the ANOVA. Note that five of these
interactions involve FUTUPROD as one of the interacting variables.
This means that the impact of other variables on relative
prediction accuracy is particularly sensitive to the anticipated
level of production in the prediction peried. Examining these
eight interactions individually leads to further insight concerning

the conditions that impact relative prediction accuracy. They are
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illustrated in Figures 4 through 11.

Figure 4, the interaction of Data History with Future
Production Level, demonstrates again that the RA model tends to
outperform the LC model as the data history becomes richer. But
this effect is most pronounced when a low future production level
is planned. If a cutback in production is projected and few
observations are available for model estimation, the LC model is
substantially more accurate than the RA model (the most negative
value for ERRDIFF occurs under these conditions). If a cutback in
production is projected and relatively many observations are
available for model estimation, the RA model is substantially more
accurate than the IC model. (The most positive valir.e for ERRDIFF
occurs under these conditions.)

Figure 5, the interaction of Fixed Cost Burden and Future
Production Level, demonstrates a somewhat analogous effect. The RA
model tends toward better accuracy than the LC model as fixed cost
burden increases. But again this effect is most pironounced when
low levels of production in the future are planned. The analyst's
concern for the impact of burden percentage on model accuracy
should be greatest when volume cutbacks are expected.

Figure 6, the interaction of Production Rate Instability and
Future Production Level also shows the importance of the future
production level. The RA model tends to outperform the LC model as
the degree of variability in the production rate increases. But
the impact of rate variability is most pronounced when a cutback in

production volume is planned. If the production rate was stable
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FIGURE 4
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FIGURE 6

INTERACTION OF PRODUCTION RATE INSTABILITY
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during the model estimation period, the LC model is more accurate.
If the production rate was fluctuating and a cutback in volume is
planned, then the RA model substantially outperforms the LC model.

Figure 7, the interaction of Cost Noise with Future Production
Level, again illustrates how the future production volume impacts
relative prediction accuracy. For all treatments, as unsystematic
factors make cost more noisy, the RA model tends to lose its
relative advantage over the simpler LC model. But this
deterioration in predictive accuracy due to noise for the RA mcdel
is more evident when a cutback in future production volume is
anticipated.

Figure 8 shows the interaction of the Production Trend during
the estimation period and the Future Production Level during the
prediction period. Again the steepest curve occurs when the future
production level is low. This plot demonstrates that if productioun
rate is relatively level during the model estimation period, the
simple LC model tends to outperform the RA model. But the RA model
outperforms the LC model when there is a shift or change in
direction of the production trend from the estimation period to the
prediction period. This follows from the positive value for
ERRDIFF when a growing past production trend is coupled with a
cdecline in future production level.

Figure 9 shows an interesting interaction between Cost Noise
and Fixed Cost Burden. The plot shows that under all conditions,
increasing cost noise reduces, and then eliminates, any benefit

from using the RA model. But the deterioration is most dramatic if
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the percentage of fixed cost in total cost is high. If burden is
high and cost is not subject to unsystematic noise, then the RA
model is substantially superior. But if burden is high and cost
is subject to unsystematic noise, the RA model is substantially
inferior.

Figure 10, the interaction between Cost Noise and Data History,
illustrates a somewhat additive effect of two factors. Either
increasing cost noise or reducing the number of observations causes
deterioration in the performance of the RA model relative to the LC
model. But combining the two effects magnifies the deterioration.
If there is high cost noise and few observations on which to
estimate model parameters, the RA model becomes ver)yinreliable and
the LC model is strongly superior.

Finally, Figure 11 shows the interaction between Production
Rate Instability and Production Rate Trend. These variables
reflect two aspecte of production rate during the moiel estimation
period. The plot illustrates that when there is l:ttle trend in
rate, coupled with little variability in rate relative to trend,
then there is little basis on which to estimate a rate parameter.

Hence the LC model strongly outperforms the RA model.

SUMMARY AND CONCLUSIONS

The central research question addressed in the study was:
under what conditions does consideration of production rate and
incorporation of a rate variable into a learning curve analysis of

cost lead to a more accurate prediction of future cost? The
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FIGURE 8
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FIGURE 9

INTERACTION OF COST NOISE
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analysis simulated prediction for both a traditional learning curve
and a rate adjustment model and compared prediction acéuracy under
various conditions. One central finding was that neither a
traditional learning curve analysis nor an analysis which considers
the impact of production rate on cest is inherently superior.
Neither models dominates; both outperform the other under some
conditions,

General tendencies were evident. Considering production rate
in the analysis lead to reduction in prediction error and improved
accuracy when

-~ The number of observations available for the analysis
was relatively rich.

-- The amount of fixed cost in total cost was relatively
high.

-~ The production rate trend had been growing during the
model estimation period.

-- The period-to-period variability in production rate was
relatively large.

-- Random noise in cost due to unsystematic factors
impacting cost was relatively low.

-- Production volume was expected to be cutback in the
future periods for which cost predictions were being
made.

Each of these findings suggests that researchers or cost analysts,
engaged in a cost prediction or cost analysis problem, may benefit
from attending to such factors when deciding on the form of model
or analysis they might bring to bear.

Numerous interacting impacts of combinations of factors on
prediction accuracy were also evident, but a broad "theme" was

apparent in the interactions, suggesting a general conclusion:

29




-~ The greatest impact (of changes in the various factors)
onh relative prediction accuracy (of the learning curve
approach and the rate adjustment approach) occurs when
cutbacks in future production are anticipated.

This means that researchers and cost analysts, attempting to
predict future cost in an environment where future production
volume is declining, will find the choice of an approach to be most
critical. The relative accuracy of the learning curve approach or
the rate adjustment approach is particularly sensitive to changes
in data richness, fixed cost burden, production rate trend and
stability, and cost noise when cutbacks are anticipated.

Other interactions collectively suggest a second general

conclusion:

L
~- The impacts of factors on the relative prediction
accuracy of the two approaches tend to be additive.

This means that if the presence of one factor (say, lean data
history) and the presence of another (say, high cost noise) both
reduce the relative accuracy of the rate adjustmentrapproach, then
the presence of both will magnify the effect.

The conclusions of any study must be tempered by any
limitations. The most prominent limitation of this study is the
use of simulated data. Use of the simulation methodology was
justified by the need to create a wide range of treatments and
maintain control over extraneous influences. This limitation
suggests some directions for future research.

-- Re-analyze the research question while altering anpects
of the simulation methodology. For example, are

findings sensitive to the cost function assumed?

-- Address the same research question using actual cost
and production rate data. Are the same findings
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evident when using "real-world" data?

Providing confirmation of the findings by tests using alternative

approaches would be beneficial.

Additional future research may be directed toward new, but

related, research questions.

Investigate other qualities of predictive performance,
for example, bias. Do learning curves or rate
adjustment models systematically provide predictions
that are biased toward under or over estimation of
future cost? Under what conditions?

Investigate the magnitude of prediction errors using
either a learning curve or rate adjustment approach.
How large are average prediction errors under varying
circumstances?

Investigate other competing models or approaches to
cost prediction. Perhaps accuracy can be improved by
using some version of a "moving average" prediction
model. Can such a model outperform both the learning
curve and the rate adjustment approach? If so, under
what circumstances?
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